

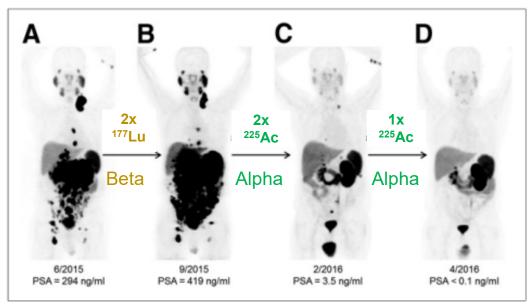
Fusion Pharmaceuticals to Acquire Phase 2 Program for ²²⁵Ac-PSMA I&T

February 13, 2023

Copyright © 2023 Fusion Pharmaceuticals Inc. All Rights Reserved

This presentation contains forward-looking statements of Fusion Pharmaceuticals, Inc. ("we," "us," "our," "Fusion" or the "Company") within the meaning of the Private Securities Litigation Reform Act of 1995. Forward looking statements include all statements that are not historical facts, and in some cases, can be identified by terms such as "may," "might," "will," "could," "would," "should," "expect," "intend," "plan," "objective," "anticipate," "believe," "estimate," "predict," "potential," "continue," "ongoing," or the negative of these terms, or other comparable terminology intended to identify statements about the future. Forward-looking statements contained in this presentation include, but are not limited to, statements regarding our future financial or business performance, conditions, plans, prospects, trends or strategies and other financial and business matters; our current and prospective product candidates, the timing and advancement of current and planned clinical trials, our ability to replicate results achieved in our preclinical studies or clinical trials, or that of RadioMedix, Inc. in any future studies or trials; research and development costs; the competitive landscape and market for our product candidates; our ability to maintain our intellectual property portfolio; the success of our planned inter partes review ("IPR") filing; and the timing and success of our development and commercialization of our product candidates, including our ability to establish and maintain collaborations or strategic relationships. New risks and uncertainties may emerge from time to time, and it is not possible to predict all risks and uncertainties. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled "Risk Factors" in our most recent annual report on Form 10-K filed with the Securities and Exchange Commission (the "SEC"), as well as discussions of potential risks, uncertainties, and other important factors in our other subsequent filings with the SEC. In addition, we have not conducted any head-to-head studies comparing our product candidates to any third-party drug products or candidates, whether investigated or approved. Information regarding other drug products in this presentation is meant to provide context for illustrative purposes only. Because there are no head-to-head studies, no conclusions should be made based on cross-study comparisons. Recipients are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date such statements are made and should not be construed as statements of fact.

This presentation includes statistical and other industry and market data that we obtained from industry publications and research, surveys and studies conducted by third parties as well as our own estimates of potential market opportunities. All of the market data used in this prospectus involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such data. Industry publications and third-party research, surveys and studies generally indicate that their information has been obtained from sources believed to be reliable, although they do not guarantee the accuracy or completeness of such information. Our estimates of the potential market opportunities for our product candidates include several key assumptions based on our industry knowledge, industry publications, third-party research and other surveys, which may be based on a small sample size and may fail to accurately reflect market opportunities. While we believe that our internal assumptions are reasonable, and management is responsible for the accuracy of such assumptions and data, no independent source has verified such assumptions.

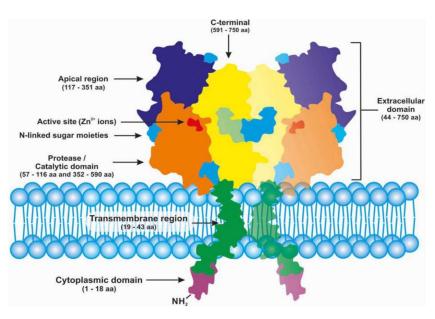

Summary

- Clinical data is emerging showing superior efficacy¹ with alpha therapies vs beta in mCRPC (e.g. ¹⁷⁷Lu-PSMA vs. ²²⁵Ac-PSMA)
 - Creates opportunities to be a best-in-class therapy for Lu naive and treat relapsed/refractory patients
 - ²²⁵Ac-PSMA-I&T has achieved clinical POC already in mCRPC
- Actinium supply barriers are preventing large scale studies and commercialization of the potentially superior alpha therapies
- Fusion is uniquely positioned with our ²²⁵Ac supply and expertise to bring the first ²²⁵Ac-PSMA agent to market
 - Similar first-to-market opportunity to what Endocyte did with ¹⁷⁷Lu-PSMA-617 (which became Pluvicto)

¹Not a head-to-head comparison

Fusion to acquire Phase 2 IND (TATCIST trial) with plan to develop ²²⁵Ac-PSMA-I&T as a potential first to market

Kratochwil et al. (2016) J. Nucl. Med. 57:1941-1944

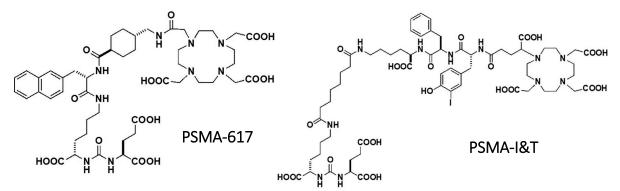

PSMA Radiopharmaceuticals: Current Developments, Challenges and Opportunities

Oliver Sartor, MD Laborde Professor of Cancer Research Medical Director Tulane Cancer Center Departments of Medicine and Urology Associate Dean for Oncology Tulane Medical School New Orleans, Louisiana

Introduction

Small molecules and antibodies targeting PSMA have been successful delivering toxins to prostate cancer.

PSMA


O'Driscott C et al, Br J Pharm 2016

A variety of promising PSMA-targeted radiopharmaceuticals are under development using both Beta and Alpha emitting radionuclides, filling important unmet need for patients PSMA Radiotherapies Clinical Trial Summary

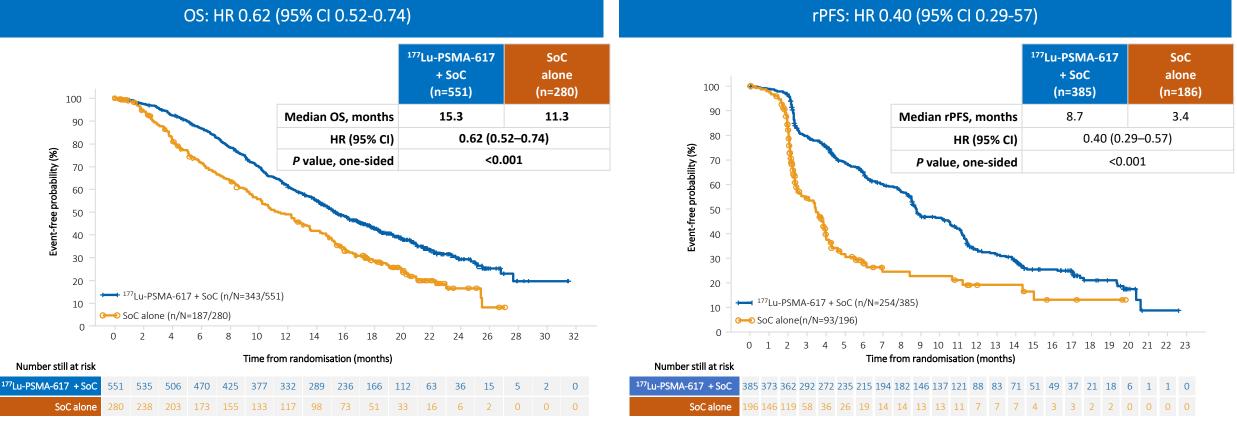
Agent / Tupe	Sponsor	lsot	оре	Ongoing Trials	
Agent / Type	Sponsor	Beta	Alpha	Phase	
J591	Cornell	¹⁷⁷ Lu		/ *	
J591	Cornell		²²⁵ Ac	*	A ntiho du
TLX591	Telix	¹⁷⁷ Lu		I	Antibody
PSMA TTC	Bayer		²²⁷ Th	I	
PSMA I&T	POINT	¹⁷⁷ Lu		III	
PSMA I&T	Curium	¹⁷⁷ Lu		Ш	
PSMA-617	Novartis	¹⁷⁷ Lu		/ *,	
PSMA-R2	Novartis	¹⁷⁷ Lu		L	
SAR-bis-PSMA	Clarity	⁶⁷ Cu		I	Small
EB-PSMA-617	Peking Union	¹⁷⁷ Lu		*	Molecule
NG-001	Nucligen		²¹² Pb	Planned	
PNT-2001	POINT		²²⁵ Ac	Planned	
PSMA-617	Novartis		²²⁵ Ac	L	
PSMA I&T	Excel Diagnostics		²²⁵ Ac	II	

PSMA-Targeted Radiotherapies: Betas and Alphas

- Current PSMA radiotherapies rely on two radiations:
 - Beta: Single stranded DNA breakage possessing lower linear energy transfer with deeper penetration
 - Alpha radiation: Double stranded DNA breakage possessing a high energy transfer with short penetration depth

Physical properties of a selection of Beta emitting radioisotopes

Radionuclide	Half-life	Maximum Energy (MeV)
Ytrium-90	2.7 days	2.28
Lutetium-177	<mark>6.7 days</mark>	<mark>0.49</mark>
lodine-131	8.0 days	0.61
Copper-67	2.6 days	0.58
Rhenium-186	3.8 days	1.07


Seminars in Nuclear Medicine 2008, 38(5), 358

Physical properties of a selection of Alpha emitting radioisotopes						
Radionuclide	Half-life	Maximum Energy (MeV)				
Astatine-211	7.2 hours	5.87				
Bismuth-212	61 minutes	6.09				
Lead-212	10.6 hours	6.09				
Actinium-225	10.0 days	<mark>5.83</mark>				
Radium-223	11.4 days	5.87				
Thorium-227	18.7 days	6.04				

Molecules 2019, 24(23), 4314

PSMA-Targeted Radiotherapies: Betas lay the foundation

• The phase III VISION study with (¹⁷⁷Lu)-PSMA-617 represented a pivotal step forward to radiopharmaceuticals resulting in FDA approval in advanced metastatic castrate-resistant prostate cancer (mCRPC)

- Phase III trials are underway to assess how effective this treatment will be in earlier stage PCa patients
 - PSMAfore was reported to have met its primary endpoint
- A similar molecule, (177Lu)- PSMA I&T, is also being evaluated in pre-chemotherapy Phase III trials

Betas Are Now an Important Part of the Treatment Paradigm

What do we do when patients still progress?

New unmet need exists for post-PLUVICTO[®] patients

PSMA-Targeted Radiotherapies: From Betas to Alphas

PSMA targeted alpha emitters (Actinium-225) as 9th line treatment

B 3x 1x 225Ac-PSMA 225Ac-PSMA 12/2014 7/2015 9/2015 PSA = 2,923 ng/mL PSA = 0.26 ng/mLPSA < 0.1 ng/mL

Kratochwil et a. J Nuc Med 57: 1-4, 2016

Patient A

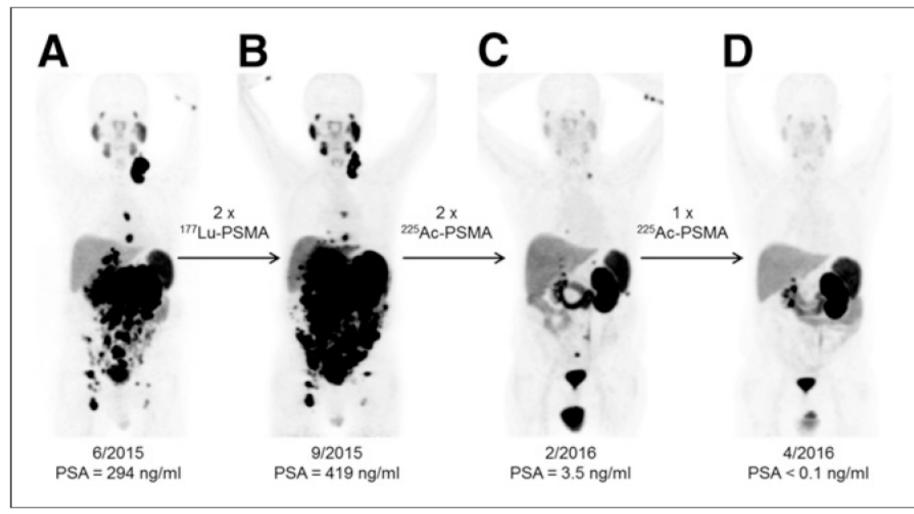
Zoledronate

Leuprorelin

Docetaxel (50 cycles) Carmustine/epirubicin in hyperthermia

Abiraterone

Enzalutamide


²²³Ra (6 cycles)

Abiraterone reexposition

Estramustine

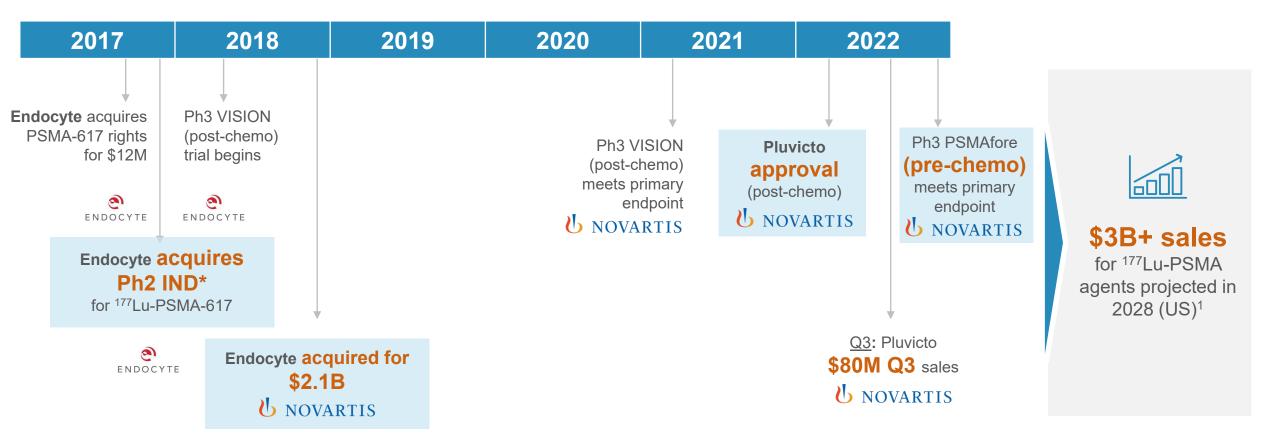
PSMA-Targeted Radiotherapies: From Betas to Alphas

Activity of Alpha (Actinium-225) Post-Beta (Lutetium-177) Failure

Overview of select investigator studies

			Percentag	ge of patients pre	-treated				
²²⁵ Ac-PSMA-617 study	Number of patients	²²⁵ Ac dose	Novel hormones (Abi/Enza)%	Docetaxel/ Cabazitaxel %	¹⁷⁷ Lu-PSMA- 617/ ²²³ Ra %	Median PSA at time of trial entry	ECOG > 2 (%)	PSA > 50% decline	Median OS months
Sathekge et al. (45)	73	8 MBq every 8 weeks [†]	2/0	51/0	14/0	57	2	70% (51/73)	18
Kratochwil et al. (46)	40	100 kBq/kg every 8 weeks	85/60	70/17.5	0/22.5	169	20	60% (24/38)	>12
Sen et al. (48)	38	100 kBq/kg every 8 weeks	63/34	100/11	24/5	147	0	66% (25/38)	12
Yadav et al. (47)	28	100 kBq/kg every 8 weeks	79/36	79/4	54/0	222	72	39% (11/28)	17
[†] Subjects were treated with 8 MBq then 7, 6, or 4 Mbq very 8 weeks on basis of response to treatment. Abi, abiraterone; ECOG, Eastern Cooperative Oncology Group; Enza, enzalutamide; PSA, prostate specific antigen; OS, overall survival.									

Summary

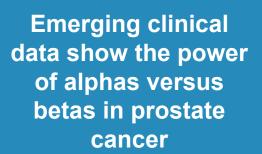

PSMA represents a validated target for prostate cancer therapeutics

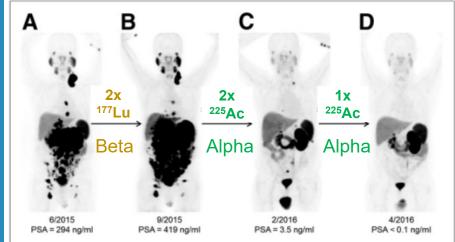
The Phase III VISION study with ¹⁷⁷lutetium (¹⁷⁷Lu)-PSMA-617 represented a pivotal step forward and the FDA has now approved this agent in advanced metastatic castrate-resistant prostate cancer (mCRPC)

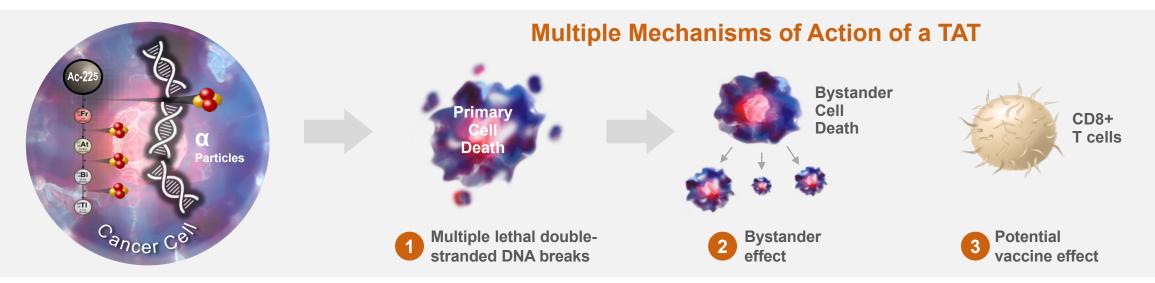
Patients progressing after lutetium therapy represent a new unmet need

Company-sponsored drug development, such as Fusion taking over the TATCIST trial with PSMA I&T, is needed to advance targeted alpha therapies towards Phase 3 for these relapsed and refractory patients, and potentially eventually earlier lines of therapy

Established roadmap for being the first to market in a growing sector *Fusion to acquire the ²²⁵Ac-PSMA Phase 2 IND from the same Investigator


Sources: company press releases, ClinicalTrials.gov; 1) GlobalData Prostate Cancer Market Forecast 2018-2028 (updated Oct 2022)

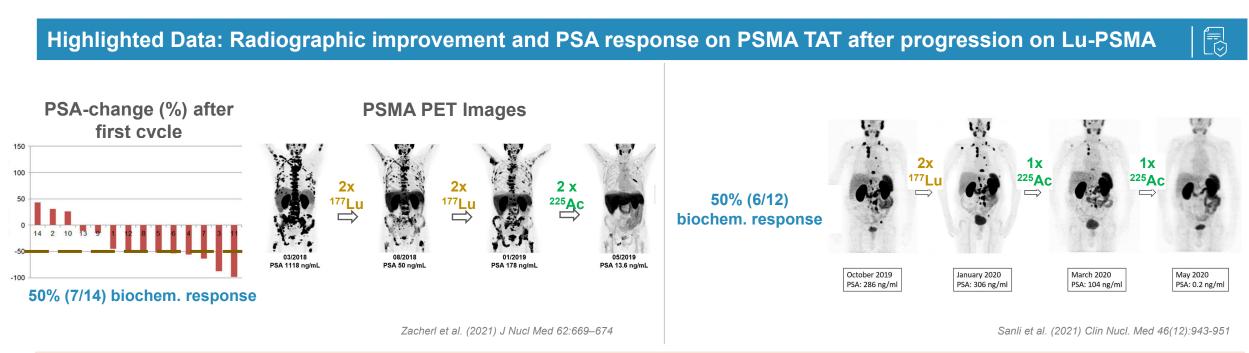

13


Alpha emitters are emerging as the next generation of PSMA RLTs – potential to be more potent and precise than betas

- Alpha particles (e.g., ²²⁵Ac) deliver 1,500 times more linear energy transfer (LET) than beta emitters (e.g., ¹⁷⁷Lu)
 - 60-100 vs 0.1-1 keV/μm
- Energy delivered over a short distance to selectively kill tumor cells while largely sparing normal tissue
- Multiple mechanisms of tumor killing

Kratochwil et al. (2016) J. Nucl. Med. 57:1941-1944

14


Multiple investigator sponsored studies support potential of ²²⁵Ac-PSMA

- Over 250 patients treated with ²²⁵Ac-PSMA globally, including ~100 post-¹⁷⁷Lu-PSMA
- Compelling efficacy data

15

- ¹⁷⁷Lu-naïve: 63-66% biochemical response rates
- Post–¹⁷⁷Lu: 28-65% biochemical response rates
- Safety results supportive of developability (no observed heme or kidney toxicity, xerostomia limited to Grade1-2)

Despite potential to be best in class, access to ²²⁵Ac supply has been a major barrier for industry to translate these advances to approved products

Fusion is well positioned to bring the first ²²⁵Ac-PSMA agent to market from supply chain and alpha experience perspectives

Global Leaders in Actinium Production Currently Producing and Shipping Material

Supply Agreement:

Strategic Partnerships

∂TRIUMF

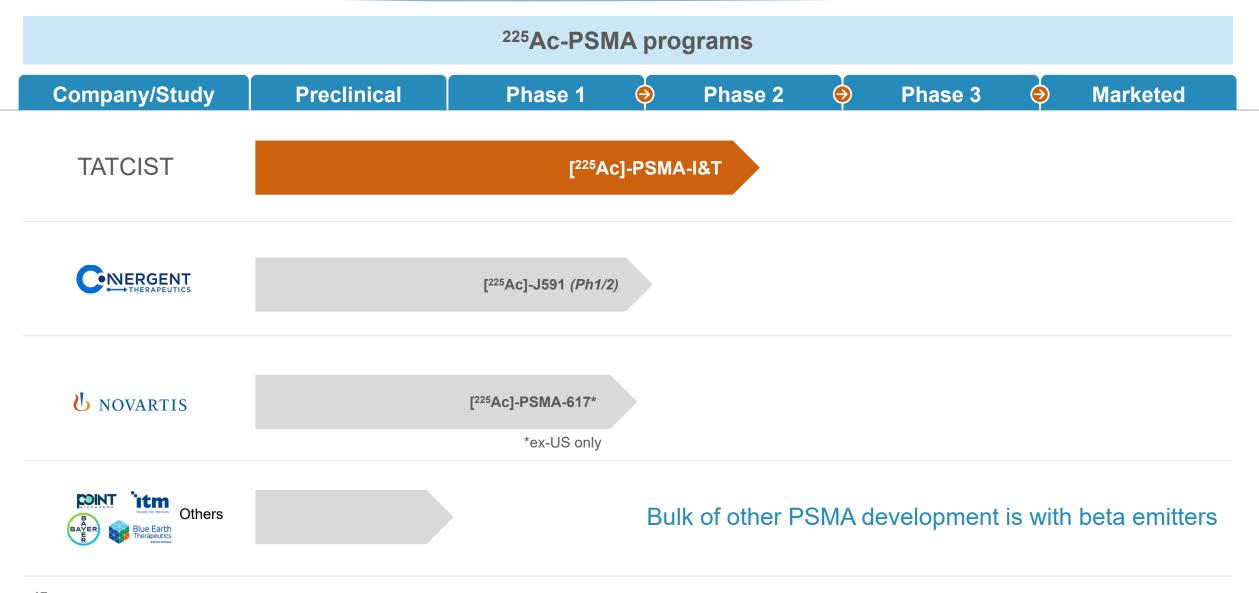
- Preferential access to supply
- Ability to scale to meet our needs
- Co-ownership of NewCo for production of Ac-225

- Guaranteed access to % of capacity
- Preferred access to excess capacity
- Option to invest for additional production

Global commercial medical isotope producer and distributor

Partnership for preferred access to actinium

Largest dedicated TAT manufacturing facility globally



- Internal GMP manufacturing to be fully operational by 2024
- Clinical & commercial supply capabilities
- Adjacent to current R&D facility for efficiency
- Multiple CDMO relationships in place today to augment supply

Skills, infrastructure, and experience – Fusion is the <u>only</u> company with three ²²⁵Ac-based radiopharmaceuticals currently in the clinic

17 Copyright © 2023 Fusion Pharmaceuticals Inc. All Rights Reserved Sources: GlobalData, Company websites, ClinicalTrials.gov

Fusion has Entered into an Option Agreement to Take Over a Phase 2 ²²⁵Ac-PSMA IND (TATCIST trial)

Patient population (mCRPC)

TATCIST Trial Summary

- Progressive disease, with docetaxel/cabazitaxel or declined taxane therapy by the patient
- With or without prior ¹⁷⁷Lu-PSMA treatment
- Positive ⁶⁸Ga-PSMA-11 PET/CT defined as SUV ≥2.0

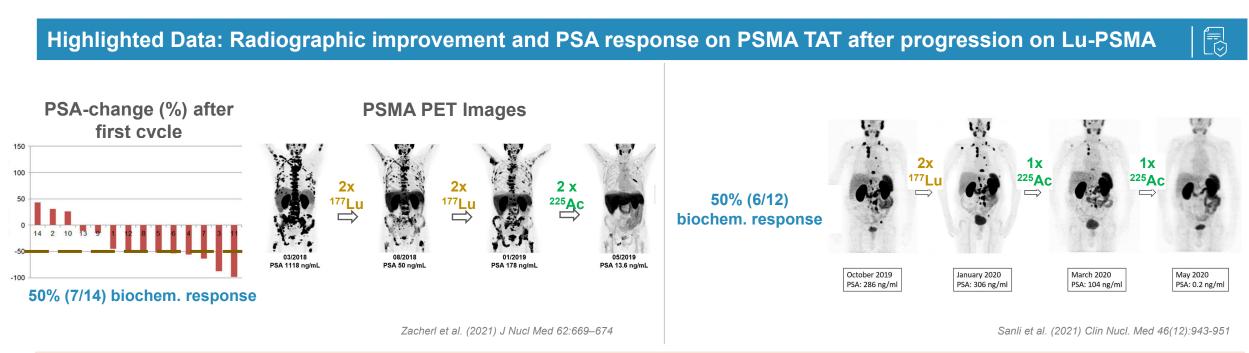
Phase 2 study design

- n=100; Number of cycles per patient = 4
- Dosing every 8 weeks
- Starting Dose = 100 kBq/kg w/ dose de-escalation based on biochemical response (>50% decline in PSA)
- PSMA PET scan at baseline, after 2nd and after last dose

Key Highlights

- Straight to Phase 2 development in US
- Potential to target broad patient population (both radiopharm-naïve and pre-treated)
- Leverages dose de-escalation learnings from ²²⁵Ac-PSMA-617 in effort to manage side effects (xerostomia) and improve therapeutic outcomes
- 10 patients already enrolled
- TATCIST was initiated by the same investigator who ran the PSMA-617 Phase 2 trial; PSMA-617 ultimately was acquired by Endocyte and became Pluvicto

Acquiring the IND paves the way for Fusion to be 1st to market with ²²⁵Ac-PSMA


Multiple investigator sponsored studies support potential of ²²⁵Ac-PSMA

- Over 250 patients treated with ²²⁵Ac-PSMA globally, including ~100 post-¹⁷⁷Lu-PSMA
- Compelling efficacy data

19

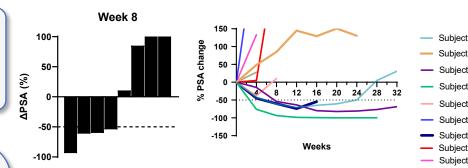
- ¹⁷⁷Lu-naïve: 63-66% biochemical response rates
- Post–¹⁷⁷Lu: 28-65% biochemical response rates
- Safety results supportive of developability (no observed heme or kidney toxicity, xerostomia limited to Grade1-2)

Despite potential to be best in class, access to ²²⁵Ac supply has been a major barrier for industry to translate these advances to approved products

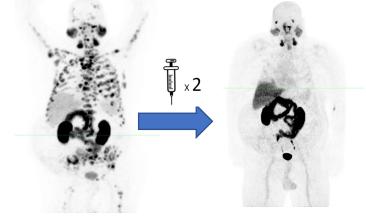
Preliminary Efficacy Results

PSA50 response

- 4/10 (40%) at any time
- 4/8 (50%) at Week 8 (after 1 cycle)


Radiographic best response (n=7): RECIST 1.1: n=7 (note: 4 with bone only disease)

- 1 complete response
- 2 partial response (1 unconfirmed¹)
- 3 stable disease


PSMA-PET response: n=5

- 1 of 5 complete response
- 2 of 5 partial response (>30% decline in standardized uptake value)
- 2 of 5 stable disease (<30% decline)

¹Unconfirmed patient has scans with 29% and 31% decrease Confirmation requires additional scan above 30%..

Radiographic assessment by PSMA PET

Subject #4- Complete Response (both by bone and PSMA-PET scans)

Preliminary TATCIST data is consistent with published data on ²²⁵Ac-PSMA; xerostomia has been manageable

Subject Subject

Subject

Subject

Subiect

— Subject

Note: evaluable patients based on available source-verified case report forms (CRFs)

Preliminary Safety Results

TRAEs N=9	% Grade I	% Grade II	% Grade III	% Grade IV
Xerostomia	78	11		
Dysgeusia	11	33		
Dry eye	22			
Fatigue	22	44		
Anemia	11	22	33 ²	
WBC decrease ANC decrease	11	22 11		
Thrombocytopenia		ΤŢ	11 ³	11 ³

²Includes one patient who had SAE of anemia G3 and thrombocytopenia G3 after 1st cycle of treatment, attribution to study drug is TBD.

³SAE of thrombocytopenia G4; Note: this patient was enrolled in violation of minimal required blood count.

Summary:

- Increase in PSA has been observed in certain patients in the study prior to 8-week posttreatment target efficacy assessment date
 - Two of these patients had ECOG Performance Status 2, a well-known adverse prognostic factor (signifying poor treatment outcomes)
- Patient with treatment-related Grade 4 thrombocytopenia and SAE of intracranial hemorrhage leading to treatment discontinuation was enrolled with Grade 2 decreased blood cell count in violation of protocol exclusion criteria
- The TATCIST study protocol was amended in December 2022 and no longer allows inclusion of Performance Status 2 patients

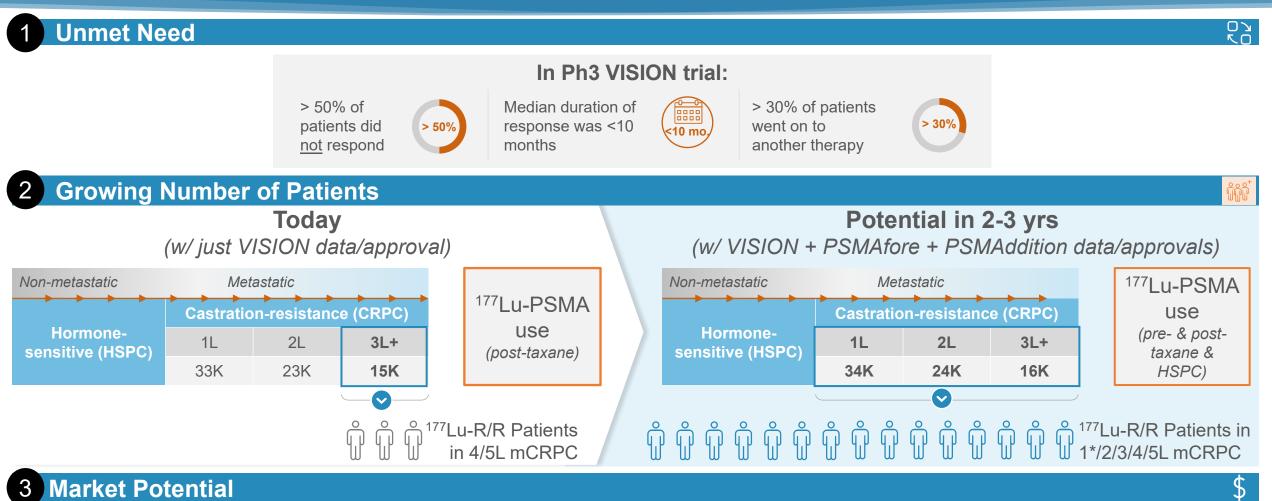
Development strategy

- Initial Approval: Potential first-to-market in ¹⁷⁷Lu-R/R patients area of highest unmet need; addressing the expected growth in the number of patients treated with ¹⁷⁷Lu-PSMA agents
- Follow-On Opportunities: Potential to expand into the treatment of ¹⁷⁷Lu-naive patients and move to early lines of therapy leveraging our combination IP (I/O, DDRis)

In ~12 months Fusion • Data for 20-30 patients, including safety and efficacy results (incl. PSA₅₀ will be able to report: responses, ORR, rPFS)

In 2024:

- Anticipated completion of Phase 2 study
- Initiation of Phase 3 study activities (pending alignment with FDA on study design)
- Focus in 2023 will be expanding to additional sites, expanding manufacturing capacity and reporting initial set of data
- We expect high demand for access to the treatment


Notes:

- Endocyte (acq. By Novartis) had data on just 30 patients from an IIT Ph2 trial before they commenced Ph3; POINT leveraged data from 27 patients from their lead-in study for SPLASH at ESMO 2022 to raise \$225M
- PSMAfore trial (Ph3 chemo-naive, n=470) took 17 months to get to primary completion with actual start in June 2021 and actual primary completion in October 2022 per clinicaltrials.gov (NCT04689828)

22 Copyright © 2023 Fusion Pharmaceuticals Inc. All Rights Reserved

Significant and growing unmet need amongst ¹⁷⁷Lu-relapsed/refractory (¹⁷⁷Lu-R/R) patients

Peak potential of \$500M+ in ¹⁷⁷Lu-R/R segment alone (US)

>\$1B additional upside in displacing ¹⁷⁷Lu-PSMA in earlier lines

Source: VISION results per clinicaltrials.gov (NCT03511664); ¹⁷⁷Lu-PSMA-617 radiographic ORR = 29.8%, mDOR = 9.8 mo.; PSA50 = 46%; duration of PSA response = 8.9 mo. Patient and sales projections for 2025 per GlobalData Prostate Cancer Global Drug Forecast 2018 and Fusion analysis (*1L mCRPC where patients receive ¹⁷⁷Lu in the HSPC setting and then progress to mCRPC)

²³ VISION: post-chemo mCRPC Ph3, PSMAfore: pre-chemo mCRPC Ph3, PSMAddition: mHSPC Ph3

Expanded R&D team with deep PSMA, radiopharmaceutical and oncology experience

Chris Leamon, CSO Scientific co-founder of Endocyte (*Pluvicto developer acq. by Novartis*)

Dmitri Bobilev, CMO

Oncol./prostate cancer drug development experience (Sanofi-Jevtana, Tesaro-Zejula)

Eric Burak, CTO CSO at CPDC (Global radiopharm manufacturer)

Cara Ferreira R&D leadership at Nordion (Global leader in medical isotopes)

Clinical Operations expertise from VISION trial

Strong Leadership Team with Radiopharmaceutical and Commercial Drug Development Expertise

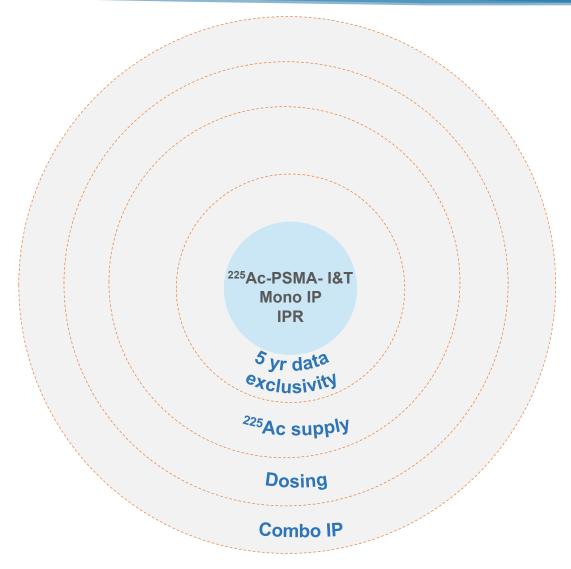
John Valliant, CEO

30 years radiopharm experience; Founder and CEO of commercial radiopharm manufacturer

Mohit Rawat, Pres. & CBO

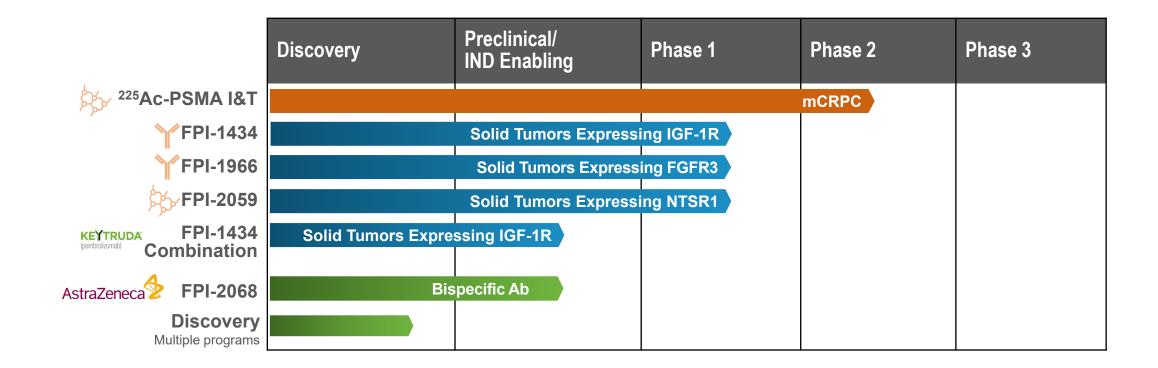
Commercial and Business Development Leader from Novartis Oncology, AbbVie and McKinsey

John Crowley, CFO


Finance and operations experience at Merus, Charles River Labs, Ironwood, Vertex & Sunovian

Clinical advisory board with deep prostate cancer and PSMA radiopharmaceutical expertise

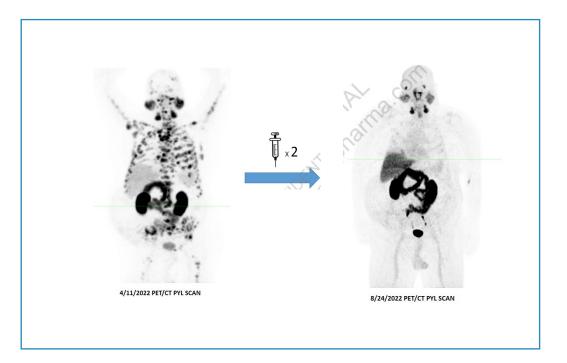
Multiple layers of protection for Fusion's first mover advantage



- ¹⁷⁷Lu-PSMA I&T was published & not patented
 - Clinical data look similar to Pluvicto
- Freedom to operate to be pursued via robust IPR to be filed to invalidate a broad patent that covers multiple
 ²²⁵Ac-PSMA agents¹
- Potential for five years data exclusivity if approved as an NCE
- High barrier to entry for generics into radiopharm
 - Expertise, infrastructure, and logistics requirements
- Fusion has combination IP for TATs with checkpoint inhibitors and DDRis
 - Two provisional PSMA I&T-specific combo patents filed to bolster our patent position
- Dosing and formulation patents is a white space
- ²²⁵Ac supply constrains all potential competitors

¹We have not yet filed the IPR and the outcome of such petition is inherently unpredictable. There is no assurance that we will be successful in challenging the issued patent. If our IPR challenge is not successful, there is no assurance that we will be successful in challenging the issued patent. If our IPR challenge is not successful, there is no assurance that we will be successful in challenging the issued patent. If our IPR challenge is not successful, there is no assurance that we will be successful in challenging the issued patent. If our IPR challenge is not successful, there is no assurance we will be able to obtain a license on reasonable terms, if at all, to the patent necessary to commercialize any candidate product utilizing ²²⁵Ac-PSMA-I&T.

²²⁵Ac-PSMA-I&T adds to Fusion's strong pipeline


With one Phase 2 (PSMA) program, three ongoing Phase 1 programs, and a near-term IND expected via our AZ collaboration, we expect to have multiple clinical updates over the next 6-24 months

Fusion uniquely positioned to be first-to-market with ²²⁵Ac-PSMA

- **Favorable deal terms:** modest upfront payment, clinical/regulatory/sales milestones, & low single digit royalties
- Validated oncology target
- POC demonstrated in investigator sponsored trials
- Established regulatory pathway
- Unmet medical need expected growth in the ¹⁷⁷Lu R/R population
- High barrier to entry due to limited ²²⁵Ac supply
- Maximizes Fusion's Ac supply advantage
- Fusion has significant TAT experience and the right team
- Opportunity to be first-to-market
- Adds a Phase 2 asset to our pipeline of novel TATs which we expect will generate multiple clinical updates over the next
 6-24 months

PSMA PET scans of a mCRPC patient treated with two cycles of ²²⁵Ac-PSMA-I&T in the TATCIST trial. A CR where the PSA level decreased from 1119 to 2.5 (>99%) after two cycles of treatment

Image is from a select patient. Results may vary by patient. This image is not necessarily indicative of expected results for every patient.

Supporting Information

Copyright © 2023 Fusion Pharmaceuticals Inc. All Rights Reserved

<u>Opportunity</u>: Multiple publications show positive efficacy results of ²²⁵Ac-PSMA across a heterogenous patient population

	Publication	Ligand*	# of Patients <i>(% post-Lu)</i>	Biochem. Response (>50% PSA red.)	PFS** (mo.)	OS (mo.)
	Feurecker et al. (2021)	²²⁵ Ac-PSMA-617	26 (100%)	65%	4.1	7.7
Post- ¹⁷⁷ Lu	<u>Ilhan et al. (2021)</u>	²²⁵ Ac-PSMA-I&T	1 (100%)	100%	-	-
	<u>Tauber et al. (2019)</u>	²²⁵ Ac-PSMA-617	18 (100%)	28%	1.3	9.6
	<u>Sanli et al. (2021)</u>	²²⁵ Ac-PSMA-617	12 (58%)	50%	4	10
	<u>Zacherl et al. (2021)</u>	²²⁵ Ac-PSMA-I&T	14 (79%)	50%	-	-
Mix	<u>Yadav et al. (2020)</u>	²²⁵ Ac-PSMA-617	28 (54%)	39%	12	17
(Post- ¹⁷⁷ Lu/ ¹⁷⁷ Lu-naïve)	Sathekge et al. (2020)	²²⁵ Ac-PSMA-617	73 (19%)	70%	15.2	18
,	Satapathy et al. (2020)	²²⁵ Ac-PSMA-617	11 (46%)	46%	-	-
	<u>Van der Doelen et al.</u> (2020)	²²⁵ Ac-PSMA-617	13 (15%)	69%	NR	8.5
	<u>Sen et al. (2021)</u>	²²⁵ Ac-PSMA-617	38 (0%)	66%	8	12
¹⁷⁷ Lu-naïve	<u>Kratochwil et al. (2018)</u>	²²⁵ Ac-PSMA-617	40 (0%)	63%	9	-
	<u>Rathke et al. (2021)</u>	²²⁵ Ac-PSMA-617	1 (0%)	100%	5 yrs	-

*Note: PSMA-I&T and PSMA-617 have been shown to be clinically comparable using ¹⁷⁷Lu in mCRPC (*Schuchardt et al. (2022) J Nucl Med 63(8):1199-1207*)

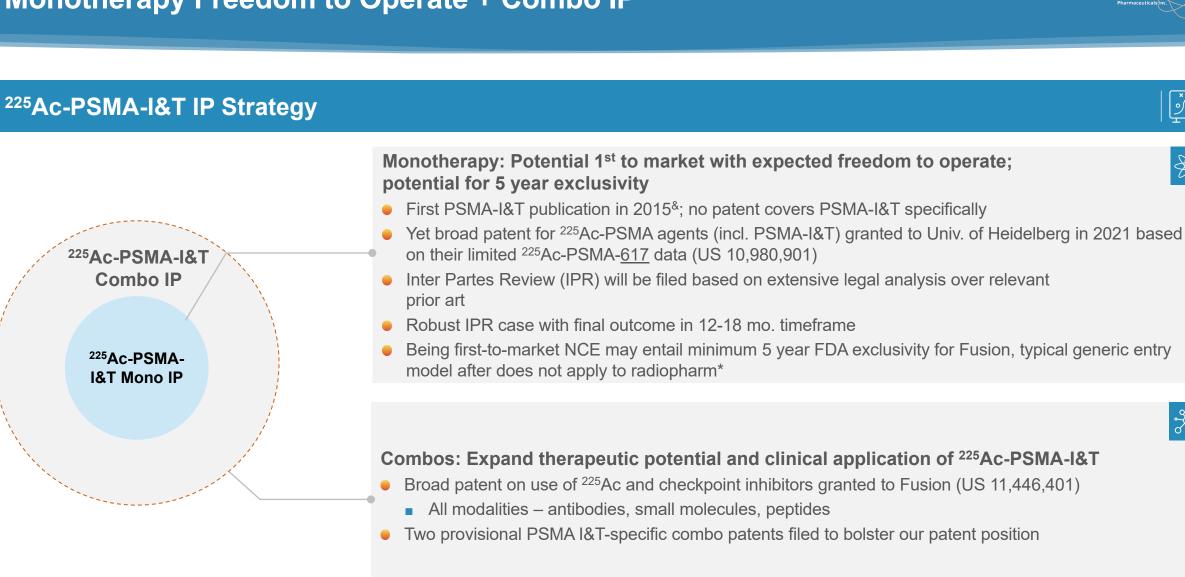
~100 post-¹⁷⁷Lu patients

**Determined by rising PSA level or ⁶⁸Ga/¹⁸F PSMA PET, or Kaplan-Meier method

Generally comparable safety results observed for ²²⁵Ac-PSMA and ¹⁷⁷Lu-PSMA; strategies emerging to manage xerostomia

Frequencies of Toxicities with ¹⁷⁷Lu-PSMA and ²²⁵Ac-PSMA Radionuclide Therapy according to Common Terminology Criteria for Adverse Events (CTCAE) v5.0

			Any G	rade	Grade 3 or h	nigher
Toxicity	Radionuclide	# of studies	# of patients	%	# of patients	%
Xerostomia	¹⁷⁷ Lu	6	299/806	37%	NR	NR
Kerostonna	²²⁵ Ac	10	161/210	77%	2/12	17%
Xeropthalmia	¹⁷⁷ Lu	1	29/98	30%	NR	NR
Xeropthaimia	²²⁵ Ac	2	5/87	6%	NR	NR
Dysgeusia	¹⁷⁷ Lu	1	12/98	12%	NR	NR
Dysgeusia	²²⁵ Ac	2	10/87	11%	NR	NR
Entique	¹⁷⁷ Lu	4	358/746	48%	36/627	6%
Fatigue	²²⁵ Ac	6	73/166	44%	1/28	4%
Anorexia	¹⁷⁷ Lu	3	137/648	21%	10/529	2%
Anorexia	²²⁵ Ac	4	36/124	29%	NR	NR
Diarrhea	¹⁷⁷ Lu	3	130/727	18%	5/627	0.8%
Diarritea	²²⁵ Ac	1	1/11	9%	NR	NR
Obatination	¹⁷⁷ Lu	2	115/548	21%	6/529	1.1%
Obstipation	²²⁵ Ac	2	21/84	25%	NR	NR
Neuroe	¹⁷⁷ Lu	4	239/747	32%	8/627	1.3%
Nausea	²²⁵ Ac	4	23/112	21%	NR	NR
Mana 141 mar	¹⁷⁷ Lu	2	117/627	19%	6/627	1%
Vomiting	²²⁵ Ac	2	5/84	6%	NR	NR
Llam Taxt	¹⁷⁷ Lu	1	7/40	18%	NR	NR
Hem. Tox*	²²⁵ Ac	NR	NR	NR	NR	NR
Anomio	¹⁷⁷ Lu	5	302/835	36%	84/816	10%
Anemia	²²⁵ Ac	7	52/170	31%	18/169	11%
L avela a ser la	¹⁷⁷ Lu	3	119/794	15%	16/794	2%
Leukopenia	²²⁵ Ac	6	26/139	19%	10/113	9%
Neutronenie	¹⁷⁷ Lu	4	42/237	18%	13/218	6%
Neutropenia	²²⁵ Ac	NR	NR	NR	NR	NR
Thursen has a stress of the	¹⁷⁷ Lu	6	230/933	25%	61/914	7%
Thrombocytopenia	²²⁵ Ac	7	22/151	15%	9/122	7%
Denel texicity	¹⁷⁷ Lu	1	16/167	10%	1/167	0.6%
Renal toxicity	²²⁵ Ac	4	27/126	21%	6/84	7%


Emerging strategies to mitigate xerostomia:

- Salivary gland protectors include cooling with *ice packs* and folic glutamate tablets
- Sialendoscopy with dilatation, saline irrigation and steroids (prednisolone)
- **Dose de-escalation**

TATCIST already includes xerostomia mitigation strategies

Source: Ling, SW et al. (2022) Advances in 177Lu-PSMA and 225Ac-PSMA Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Pharmaceutics 14, 2166

FOR ILLUSTRATIVE PURPOSES ONLY: studies were not head-to-head comparisons between 177Lu-PSMA and 225Ac-PSMA. Differences exist between trial designs and subject characteristics, and caution should be exercised when comparing pooled and comparative data across studies.

[&]Weineisen et al. (2015) J Nucl Med 56(8):1169-76

*Note: Radiopharm has an extremely high barrier to entry due to expertise, infrastructure, and logistics requirements. Thus, typical generic entry model at end of NCE exclusivity period does not apply in absence of monotherapy patent

Combinations with I/O and DDRis could dramatically increase therapeutic indices and addressable market

Potential of Combination Therapies in mCRPC

- Expand utility of I/O and DDRis in mCRPC beyond narrow genetically-defined segments
- Widen therapeutic index by allowing for lower doses to reduce toxicity
- Move into earlier lines of therapy

²²⁵Ac-PSMA w/ Checkpoint Inhibitors

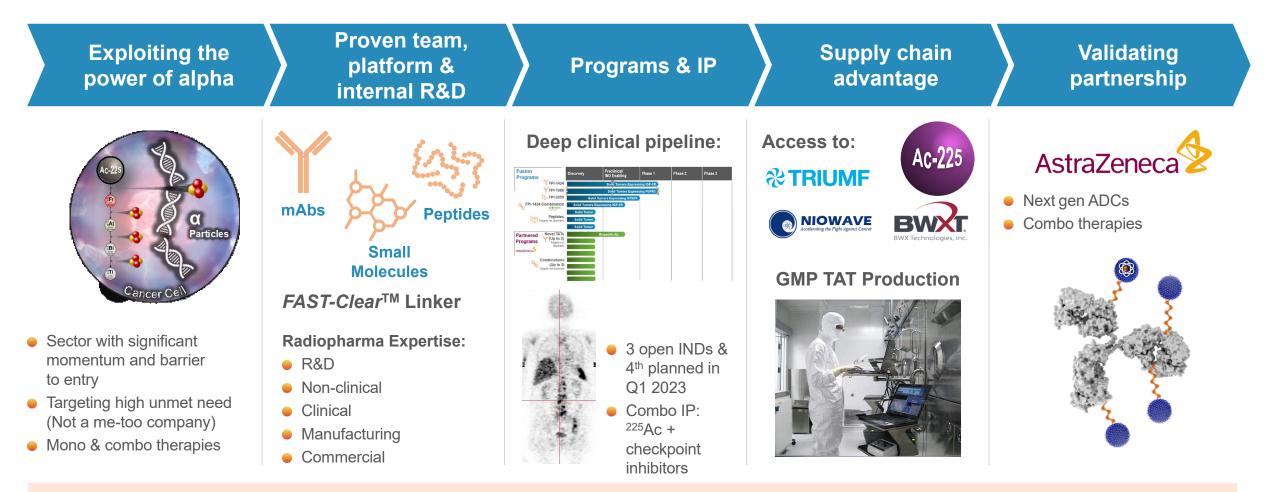
Prime immune system to target tumors

- Keytruda does <u>not</u> have standalone prostate approval
 - Recent failure of KEYNOTE-921 (pembrolizumab + chemo)
- Use in mCRPC restricted to pan-tumor salvage in MSI-H/dMMR (<1% prostate) or TMB-H (<10% prostate)
- Abscopal effect seen on distal lesions (preclinical data)

Synthetic lethality of TAT-induced DNA damage with repair inhibition

²²⁵Ac-PSMA w/ DDRi's

- Lynparza's prostate approval currently <u>restricted</u> to mHRR patients
- <1/3 of patients are mHRR and testing can be a barrier
- Synergistic effect seen in combo (preclinical data)


Fusion holds a broad patent for ²²⁵**Ac + checkpoint inhibitor combos**

Source: MSI-H frequency from Bonneville R. et al (2017) JCO Precision Oncology; TMB-H frequency from Fabrizio D. et al (2021) Annals of Oncology; mHRR frequency from TOPARP, PROFOUND, and TRITON studies

Fusion is Differentiated in the Emerging Radiopharmaceutical Space

Differentiation: Fusion is a vertically integrated radiopharma company with a platform that is creating precision medicines in areas of high unmet need

Incidence of TEAEs and TRAEs in Subjects (N=9, preliminary) treated with ²²⁵Ac-PSMA-I&T

TEAEs N=9

	%	%	%	%
	Grade I	Grade II	Grade III	Grade IV
Xerostomia	78	11		
Dysgeusia	11	33		
Dry eye	22			
Fatigue	22	44		
Pain	33	22	11	
Anemia	11	22	33	
WBC decrease		22		
ANC decrease	11	11		
Thrombocytopenia			11	11
ALP increase	22	22		
ALT increase	11			
AST increase	11			
Creatinine increase	22		11	
eGFR decrease	11			
Constipation	44	22		
Nausea	44	11		
Diarrhea	11			
Atrial fibrillation	11			
Pleural effusion	11			
Pulmonary embolism			11	
Acute Deep Venous				
Thrombosis			11	
Edema limbs	11			

TRAEs N=9

	%	%	%	%
	Grade I	Grade II	Grade III	Grade IV
Xerostomia	78	11		
Dysgeusia	11	33		
Dry eye	22			
Fatigue	22	44		
Anemia	11	22	33	
WBC decrease		22		
ANC decrease	11	11		
Thrombocytopenia			11	11

SAEs	Attribution	Occurrence
Creatinine increase G3, hospitalization for renal failure (AKI)	Unrelated	During follow-up
Hospitalization, cord compression, urinary retention, pleural effusion	Unrelated	Off-treatment
Death (2)	Unrelated	Off-treatment
Hospitalization, Anemia G3 and Thrombocytopenia G3,	TBD	After 1 st cycle
Hospitalization intracerebral hemorrhage	Unrelated	After 2 nd cycle
Thrombocytopenia G4, Platelet transfusion	Related	After 2 nd cycle